II B.Tech I Semester Regular Examinations, March-2021
 Networks and Transmission Lines
 (Electronics and Communication Engineering)

Time: 3 Hours
Max. Marks: 60
Note : Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 2}=\mathbf{6 0}$ Marks)

UNIT-I

1. a) Find the Thevenin's equivalent circuit for the following circuit across the terminal [6M] a and b

b) Find the current through each resistance of circuit shown below using nodal analysis.

(OR)
2. a) Find the maximum power transferred by the source to the load of 5Ω load [6M] resistance.

b) Find the Norton's equivalent across the terminals a-b.

UNIT-II

3. a) Find the h-parameters of the following network.

b) Two 2-port networks are connected in series and being represented by the [Z] and [6M] [Z] parameters as follows.

$$
[\mathrm{Z}]=\left[\begin{array}{ll}
2 & 5 \\
3 & 2
\end{array}\right][\mathrm{Z}]=\left[\begin{array}{ll}
3 & 2 \\
2 & 5
\end{array}\right]
$$

Find the h-parameters of the combined network.

(OR)

4. a) Find The [Z] parameters of the following network.

b) Find Z parameters of the following electrical network.

UNIT-III

5. a) Find the transient response of current in a series RL circuits for a DC excitation of V volts applied at $\mathrm{t}=0$. Assume inductor has zero initial energy.

b) Write the expression of current through inductor in the following circuits.

(OR)
6. a) Determine the complete solution for current ' i ' in following circuit.

b) The winding of an electromagnet has an inductance of 5 H and a resistance of 20

Ohms. When it is connected to a 220 V , DC. supply, calculate:
(a) the steady state value of current flowing in the winding,
(b) the time constant of the circuit,
(c) the value of the induced e mf . after 0.2 s ,
(d) the time for the current to rise to 90% of its final value, and(e) the value of the current after 0.5 s

UNIT-IV

7. Starting from the electrical equivalent circuit, derive the voltage and current expressions at any point on transmission line. Write the same for infinite transmission line.

(OR)

8. a) What is the difference between the distortions less and loss less transmission? Please give example of each type transmission line.
b) Explain the requirements for distortion less transmission on transmission lines

UNIT-V

9. a) Derive the expression for input impedance of a transmission line of length l and characteristic impedance Z_{o}.
b) Find the input impedance of a short circuited and open circuited transmission line. Also draw the it's behavior in respect to the time scale.

(OR)

10. a) What do you mean by the impedance matching? Explain the impedance matching using stub.
b) Find the reflection coefficient and standing wave ratio of a transmission line if it is terminated at the short circuit and open circuit load.
